Solvation dynamics in imidazolium and phosphonium ionic liquids: Effects of solute motion
نویسندگان
چکیده
Experimental and simulation results of solvation dynamics in ionic liquids have so far been explained in terms of translational motion of the ions constituting the ionic liquids under investigation. A recent theoretical study [Kashyap & Biswas, J Phys Chem B, 114 (2010) 254] has indicated that while translational motion of the constituent ions is indeed responsible for Stokes’ shift dynamics of a polar solute probe in non-dipolar ionic liquids (such as phosphonium ionic liquids), fast orientational relaxation of dipolar ions significantly affects the spectral dynamics in imidazolium ionic liquids. Herein, we investigate the effects of rotational and translational motions of a dissolved dipolar probe on the Stokes’ shift dynamics in these representative non-dipolar and dipolar ionic liquids. Theoretical results presented here suggest that while the probe-motion accelerates the solvation-rate in non-dipolar ionic liquids twice over the fixed solute values, it plays a secondary role in dipolar ionic solvents. The sensitivity to the solute’s self-motion of the rate of solvation has been found to be linked to the solute-cation size ratio and is decoupled from the initial ultrafast response in dipolar ionic liquids. This work also explains the reasons for not observing the effects of solute motion in simulation study of solvation dynamics in the imidazolium ionic liquid considered herein. Careful analyses of the effects of solute motion further support the fact that rotation of dipolar solvent species, like in conventional polar solvents, dictates the initial phase of solvation of a dipolar probe in imidazolium and other dipolar ionic liquids. In addition, probe size dependence is predicted in non-dipolar ionic liquids, such as phosphonium ionic liquids.
منابع مشابه
Ultrafast solvation response in room temperature ionic liquids: possible origin and importance of the collective and the nearest neighbour solvent modes.
Recent three-pulse photon echo peak shift (3PEPS) measurements [M. Muramatsu, Y. Nagasawa, and H. Miyasaka, J. Phys. Chem. A 115, 3886 (2011)] with several room temperature ionic liquids (RTILs) have revealed multi-exponential dynamics with ultrafast solvation timescale in the range, 20 < τ(1)∕fs < 250, for both imidazolium and phosphonium RTILs. This is striking for two reasons: (i) the timesc...
متن کاملSolvation dynamics of room-temperature ionic liquids: evidence for collective solvent motion on sub-picosecond timescales
Little is known about the microscopic mechanism of solvation dynamics in room-temperature ionic liquids, but experimental studies have found that the solvent response has both sub-picosecond and nanosecond timescale components. We present the results of molecular dynamics calculations of the time-resolved fluorescence response of a chromophore in an ionic liquid, and analyze the solute–solvent ...
متن کاملDynamic solvation in phosphonium ionic liquids: comparison of bulk and micellar systems and considerations for the construction of the solvation correlation function, C(t).
Dynamic solvation of the dye coumarin 153 is studied in a phosphonium ionic liquid: hexadecyltributylphosphonium bromide, [(C4)3C16P+][Br-]. It forms micelles in water, and the bulk also exists as a liquid under our experimental conditions. This system permits a comparison with an imidazolium ionic liquid studied earlier, which also formed micelles in water (J. Phys. Chem. A 2006, 110, 10725-10...
متن کاملTwo-dimensional ultrafast vibrational spectroscopy of azides in ionic liquids reveals solute-specific solvation.
The stereochemistry and the reaction rates of bimolecular nucleophilic substitution reactions involving azides in ionic liquids are governed by solute-solvent interactions. Two-dimensional ultrafast vibrational spectroscopy (2D-IR) shows that the picosecond dynamics of inorganic azides are substantially slower than organic azides in a series of homologous imidazolium ionic liquids. In water, bo...
متن کاملSolvation dynamics in polar solvents and imidazolium ionic liquids: failure of linear response approximations
This study presents the large scale computer simulations of two common fluorophores, N-methyl-6oxyquinolinium betaine and coumarin 153, in five polar or ionic solvents. The validity of linear response approximations to calculate the time-dependent Stokes shift is evaluated in each system. In most studied systems linear response theory fails. In ionic liquids the magnitude of the overall respons...
متن کامل